Engineering
Mathematics
Tangent of Parabola
Question

Let PQ be a focal chord of the parabola y2 = 4ax. The tangents to the parabola at P and Q meet at a point lying on the line y = 2x + a, a > 0.

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Linked Question 1

Length of chord PQ is

7a

5a

2a

3a

Solution

Here,    t1t2 = – 1

and       t1 + t2 = – 1

(i)         Here θ = obtuse angle

        tan θ < 0

Now,     | tan θ | =  |2t1    2t11+4t1t2|=235tanθ=235

(ii)        Length PQ

            = (a + at12) + (a + at22)

            = a[t12 + t22 + 2]

            = a[(t1 + t2)2 – 2t1t2 + 2]

        Length PQ = 5a

Lock Image

Please subscribe our Youtube channel to unlock this solution.

Linked Question 2

If chord PQ subtends an angle θ at the vertex of y2 = 4ax, then tan θ =

 273

 253

 253

 273

Solution

Here,   t1t2 = – 1

            and       t1 + t2 = – 1

(i)         Here θ = obtuse angle

       tan θ < 0

Now,     | tan θ | =   |2t1    2t11+4t1t2|=235tanθ=235

(ii)        Length PQ

            = (a + at12) + (a + at22)

            = a[t12 + t22 + 2]

            = a[(t1 + t2)2 – 2t1t2 + 2]

          Length PQ = 5a

Lock Image

Please subscribe our Youtube channel to unlock this solution.