Engineering
Mathematics
Basic Rules of Properties of Triangle
Question

In ΔABC, if A and  B are complementary angles such that tan2A + 16 tan2 B + tan A + 4 tan B = 12 and  c = 8, then

Column I Column II
(A) length of the altitude from the vertex C to the side  AB is (P) 2
(B) area of the ΔABC is (Q) 165 
(C) the ratio sinAsinB equals (R) 4
(D) length of the median from vertex C to the side  AB is (S) 645 

A → Q; B → R; C → P; D → S

A → Q; B → S; C → P; D → R

A → S; B → Q; C → P; D → R

A → R; B → S; C → P; D → Q

JEE Advance
College PredictorLive

Know your College Admission Chances Based on your Rank/Percentile, Category and Home State.

Get your JEE Main Personalised Report with Top Predicted Colleges in JoSA

Solution
Verified BY
Verified by Zigyan

tan2A + 16 tan2 B + tan A + 4 tan B = 12 

tan2A + 16 cot2 A + tan A + 4 cot A = 12 

(tan A – 4 cot A)2 + (tanA2cotA)2 = 0

tan A = 4 cot A and tanA=2cotA = 2 

⇒  tan A = 2  and  tan B = 12 

  

(A) tan A = px = 2  ⇒  p = 2x

 tanB=p8x=12  ⇒ 2p = 8 – x

⇒ p=165,x=325 

(B) Δ=12×8×165=645 

(C) sinAsinB=2515=2 

(D) Median CE = l = 4

Lock Image

Please subscribe our Youtube channel to unlock this solution.